Начало современной математикиСтраница 2
Аналитическая геометрия использует алгебраические уравнения для представления и исследования кривых и поверхностей. Декарт считал приемлемой кривую, которую можно записать с помощью единственного алгебраического уравнения относительно х и у. Такой подход был важным шагом вперед, ибо он не только включил в число допустимых такие кривые, как конхоида и циссоида, но также существенно расширил область кривых. В результате в 17-18 вв. множество новых важных кривых, таких как циклоида и цепная линия, вошли в научный обиход.
По-видимому, первым математиком, который воспользовался уравнениями для доказательства свойств конических сечений, был Дж. Валлис. К 1865 он алгебраическим путем получил все результаты, представленные в V книге Начал Евклида.
Аналитическая геометрия полностью поменяла ролями геометрию и алгебру. Как заметил великий французский математик Лагранж, "пока алгебра и геометрия двигались каждая своим путем, их прогресс был медленным, а приложения ограниченными. Но когда эти науки объединили свои усилия, они позаимствовали друг у друга новые жизненные силы и с тех пор быстрыми шагами направились к совершенству".
Математический анализ. Основатели современной науки - Коперник, Кеплер, Галилей и Ньютон - подходили к исследованию природы как математики. Исследуя движение, математики выработали такое фундаментальное понятие, как функция, или отношение между переменными, например d = kt2, где d - расстояние, пройденное свободно падающим телом, а t - число секунд, которое тело находится в свободном падении. Понятие функции сразу же стало центральным в определении скорости в данный момент времени и ускорения движущегося тела. Математическая трудность этой проблемы заключалась в том, что в любой момент тело проходит нулевое расстояние за нулевой промежуток времени. Поэтому определяя значение скорости в момент времени делением пути на время, мы придем к математически бессмысленному выражению 0/0.
Задача определения и вычисления мгновенных скоростей изменения различных величин привлекала внимание почти всех математиков 17 в., включая Барроу, Ферма, Декарта и Валлиса. Предложенные ими разрозненные идеи и методы были объединены в систематический, универсально применимый формальный метод Ньютоном и Г. Лейбницем (1646-1716), создателями дифференциального исчисления. По вопросу о приоритете в разработке этого исчисления между ними велись горячие споры, причем Ньютон обвинял Лейбница в плагиате. Однако, как показали исследования историков науки, Лейбниц создал математический анализ независимо от Ньютона. В результате конфликта обмен идеями между математиками континентальной Европы и Англии на долгие годы оказался прерванным с ущербом для английской стороны. Английские математики продолжали развивать идеи анализа в геометрическом направлении, в то время как математики континентальной Европы, в том числе И. Бернулли (1667-1748), Эйлер и Лагранж достигли несравненно бльших успехов, следуя алгебраическому, или аналитическому, подходу.
Основой всего математического анализа является понятие предела. Скорость в момент времени определяется как предел, к которому стремится средняя скорость d/t, когда значение t все ближе подходит к нулю. Дифференциальное исчисление дает удобный в вычислениях общий метод нахождения скорости изменения функции f (x) при любом значении х. Эта скорость получила название производной. Из общности записи f (x) видно, что понятие производной применимо не только в задачах, связанных с необходимостью найти скорость или ускорение, но и по отношению к любой функциональной зависимости, например, к какому-нибудь соотношению из экономической теории. Одним из основных приложений дифференциального исчисления являются т. н. задачи на максимум и минимум; другой важный круг задач - нахождение касательной к данной кривой.
Оказалось, что с помощью производной, специально изобретенной для работ с задачами движения, можно также находить площади и объемы, ограниченные соответственно кривыми и поверхностями. Методы евклидовой геометрии не обладали должной общностью и не позволяли получать требуемые количественные результаты. Усилиями математиков 17 в. были созданы многочисленные частные методы, позволявшие находить площади фигур, ограниченных кривыми того или иного вида, и в некоторых случаях была отмечена связь этих задач с задачами на нахождение скорости изменения функций. Но, как и в случае дифференциального исчисления, именно Ньютон и Лейбниц осознали общность метода и тем самым заложили основы интегрального исчисления.
Метод Ньютона - Лейбница начинается с замены кривой, ограничивающей площадь, которую требуется определить, приближающейся к ней последовательностью ломаных, аналогично тому, как это делалось в изобретенном греками методе исчерпывания. Точная площадь равна пределу суммы площадей n прямоугольников, когда n обращается в бесконечность. Ньютон показал, что этот предел можно найти, обращая процесс нахождения скорости изменения функции. Операция, обратная дифференцированию, называется интегрированием. Утверждение о том, что суммирование можно осуществить, обращая дифференцирование, называется основной теоремой математического анализа. Подобно тому, как дифференцирование применимо к гораздо более широкому классу задач, чем поиск скоростей и ускорений, интегрирование применимо к любой задаче, связанной с суммированием, например, к физическим задачам на сложение сил.
Нубийская твердыня
Здесь, в Нубии, на окраине Египта, такие храмы, как Абу-Симбел, имеют двойное назначение. С одной стороны, это - символы Его безграничного превосходства. Сам вид их призван был подавлять в местных жителях любые помышления о мятеже и уклон ...
Игры
Турецкое население в основной своей массе не проявляет большого пристрастия к групповым играм: природная степенность и следование религиозным предписаниям являются причиной отсутствия интереса к тому, что в наши дни мы бы назвали расслабл ...
Орлеан
Из Пуатье Жанна возвратилась в Шинон, провела там несколько дней, а затем направилась в Тур и занялась приготовлениями к предстоящему походу (Тур славился своими оружейниками, и одному из них королевский казначей уплатил 2 апреля сто ливр ...